Dual-Vth leakage reduction with fast clock skew scheduling enhancement

  • Authors:
  • Meng Tie;Haiying Dong;Tong Wang;Xu Cheng

  • Affiliations:
  • Peking University, Beijing, China;Peking University, Beijing, China;Peking University, Beijing, China;Peking University, Beijing, China

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dual-Vth technique is a mature and effective method for reducing leakage power consumption. Previously proposed algorithms assign logic gates with sufficient timing slack to high threshold voltage to reduce leakage power without impact on timing. Meanwhile, clock skew scheduling algorithms are always utilized to optimize period or timing slack. In order to further reduce subthreshold leakage power consumption, in this paper, we ingeniously combine dual voltage assignment technique with intended clock skew scheduling: First, a leakage weight based clock skew scheduling algorithm is proposed to enlarge the leakage power optimization potential. Then we employ a dual-threshold voltage assignment algorithm to minimize leakage power. The experimental results on ISCAS89 benchmark circuits show that, within only several seconds, the leakage power can be further reduced by as much as 41.30% and by 9.87% on average with this new approach, compared to using the traditional method without considering clock skews. Three timing optimized industrial circuit blocks, among which each has around one hundred thousand gates, have also been optimized. It is shown that an average leakage power reduction of 9.95% can be achieved within minutes compared with traditional techniques.