Enabling efficient post-silicon debug by clustering of hardware-assertions

  • Authors:
  • M. H. Neishaburi;Zeljko Zilic

  • Affiliations:
  • McGill University, Montreal, QC, Canada;McGill University, Montreal, QC, Canada

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bug-free first silicon is not guaranteed by the existing pre-silicon verification techniques. To have impeccable products, it is now required to identify any bug as soon as the first silicon becomes available. We consider the Assertion Based Verification techniques for the post-silicon debugging based on the insertion of hardware checkers in the debug infrastructure for complex systems on chip. This paper proposes a method to cluster hardware-assertion checkers using the graph partitioning approach. It turns out that having the clusters of hardware-assertions and controlling each cluster selectively during the debug mode and normal operation of the circuit makes integration of assertions inside the circuits easier, and causes lower energy consumption and efficient debug scheduling.