NISHA: A fault-tolerant NoC router enabling deadlock-free Interconnection of Subnets in Hierarchical Architectures

  • Authors:
  • M. H. Neishaburi;Zeljko Zilic

  • Affiliations:
  • Department of Electrical Engineering, McGill University, Montreal, Quebec, Canada H3A 2A7;Department of Electrical Engineering, McGill University, Montreal, Quebec, Canada H3A 2A7

  • Venue:
  • Journal of Systems Architecture: the EUROMICRO Journal
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Decrease in the Integrated Circuit (IC) feature sizes leads to the increase in the susceptibility to transient and permanent errors. The growing rate of such errors in ICs intensifies the need for a wide range of solutions addressing reliability at various levels of abstractions. Network on Chip (NoC) architecture has been introduced to address the increasing demand for communication bandwidth among processing cores. The structural redundancy inherited in NoC-based system can be leveraged to improve reliability and compensate for the effects of failures. In this paper, we propose a fault-tolerant NoC router NISHA, which stands for No-deadlock Interconnection of Subnets in Hierarchical Architectures. Armed with a new flow control mechanism, as well as an enhanced Virtual Channel (VC) regulator, the proposed router can mitigate the effects of both transient and permanent errors. A Dynamic/Static virtual channel allocation with respect to the local and global traffic is supported in NISHA; thereby, it maintains a deadlock-free state in the presence of routers or link failures in hierarchical topologies. Experimental results show an enhanced operation of NoC applications as well as the decrease in the average latency and energy consumption.