Imperfection-immune VLSI logic circuits using carbon nanotube field effect transistors

  • Authors:
  • Subhasish Mitra;Jie Zhang;Nishant Patil;Hai Wei

  • Affiliations:
  • Stanford University, Stanford, CA;Stanford University, Stanford, CA;Stanford University, Stanford, CA;Stanford University, Stanford, CA

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Carbon Nanotube Field-Effect Transistors (CNFETs) show big promise as extensions to silicon-CMOS because: 1) Ideal CNFETs can provide significant energy and performance benefits over silicon-CMOS, and 2) CNFET processing is compatible with existing silicon-CMOS processing. However, future gigascale systems cannot rely solely on existing chemical synthesis for guaranteed ideal devices. VLSI-scale logic circuits using CNFETs must overcome major challenges posed by: 1) Misaligned and mispositioned Carbon Nanotubes (CNTs); 2) Metallic CNTs; and, 3) CNT density variations. This paper performs detailed analysis of the impact of these challenges on CNFET circuit performance. A combination of design and processing techniques, presented this paper, can enable VLSI-scale CNFET logic circuits that are immune to high rates of inherent imperfections. These techniques are inexpensive compared to traditional defect- and fault-tolerance, do not impose major changes in VLSI design flows, and are compatible with VLSI processing because they do not require special customization on chip-by-chip basis.