Hardware/software co-design architecture for thermal management of chip multiprocessors

  • Authors:
  • Omer Khan;Sandip Kundu

  • Affiliations:
  • University of Massachusetts, Amherst, MA;University of Massachusetts, Amherst, MA

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The sustained push for performance, transistor count, and instruction level parallelism has reached a point where chip level power density issues are at the forefront of design constraints. Many high performance computing platforms are integrating several homogeneous or heterogeneous processing cores on the same die to fit small form factors. Due to the design limitations of using expensive cooling solutions, such complex chip multiprocessors require an architectural solution to mitigate thermal problems. Many of the current systems deploy Dynamic Voltage and Frequency Scaling (DVFS) to address thermal emergencies, either within the Operating System or hardware. These techniques have certain limitations in terms of response lag, scalability, cost and being reactive. In this paper, we present an alternative thermal management system to address these limitations, based on hardware/software co-design architecture. The results show that in the 65nm technology, a predictive, targeted, and localized response to thermal events improves a quad-core performance by an average of 50% over conventional chip-level DVFS.