Rapid design space exploration of application specific heterogeneous pipelined multiprocessor systems

  • Authors:
  • Haris Javaid;Aleksander Ignjatovic;Sri Parameswaran

  • Affiliations:
  • School of Computer Science and Engineering, University of New South Wales, Sydney, Australia;School of Computer Science and Engineering, University of New South Wales, Sydney, Australia;School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.03

Visualization

Abstract

This paper describes a rapid design methodology to create a pipeline of processors to execute streaming applications. The methodology seeks a system with the smallest area while its runtime is within a specified runtime constraint. Initially, a heuristic is used to rapidly explore a large number of processor configurations to find the near Pareto front of the design space, and then an exact integer linear programming (ILP) formulation (EIF) is used to find an optimal solution. A reduced ILP formulation (RIF) or the heuristic is used if the EIF does not find an optimal solution in a given time window. This design methodology was integrated into a commercial design flow and was evaluated on four benchmarks with design spaces containing up to 1016 design points. For each benchmark, the near Pareto front was found in less than 3 h using the heuristic, while EIF took up to 16 h. The results show that the average area error of the heuristic and RIF was within 2.25% and 1.25% of the optimal design points for all the benchmarks, respectively. The heuristic is faster than RIF, while both the heuristic and RIF are significantly faster than EIF.