Minimizing buffer requirements for throughput constrained parallel execution of synchronous dataflow graph

  • Authors:
  • Tae-ho Shin;Hyunok Oh;Soonhoi Ha

  • Affiliations:
  • Seoul National University, Seoul, KOREA;Hanyang University, Seoul, KOREA;Seoul National University, Seoul, KOREA

  • Venue:
  • Proceedings of the 16th Asia and South Pacific Design Automation Conference
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper concerns throughput-constrained parallel execution of synchronous data flow graphs. This paper assumes static mapping and dynamic scheduling of nodes, which has several benefits over static scheduling approaches. We determine the buffer size of all arcs to minimize the total buffer size while satisfying a throughput constraint. Dynamic scheduling is able to achieve the similar throughput performance as the static scheduling does by unfolding the given SDF graph. A key issue of dynamic scheduling is how to assign the priority to each node invocation, which is also discussed in this paper. Since the problem is NP-hard, we present a heuristic based on a genetic algorithm. The experimental results confirm the viability of the proposed technique.