Trading Accuracy for Power with an Underdesigned Multiplier Architecture

  • Authors:
  • Parag Kulkarni;Puneet Gupta;Milos Ercegovac

  • Affiliations:
  • -;-;-

  • Venue:
  • VLSID '11 Proceedings of the 2011 24th International Conference on VLSI Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a novel multiplier architecture with tunable error characteristics, that leverages a modified inaccurate 2x2 building block. Our inaccurate multipliers achieve an average power saving of 31.78% ? 45.4% over corresponding accurate multiplier designs, for an average error of 1.39%?3.32%. Using image filtering and JPEG compression as sample applications we show that our architecture can achieve 2X - 8X better Signal-Noise-Ratio (SNR) for the same power savings when compared to recent voltage over-scaling based power-error tradeoff methods. We project the multiplier power savings to bigger designs highlighting the fact that the benefits are strongly design dependent. We compare this circuit-centric approach to power quality tradeoffs with a pure software adaptation approach for a JPEG example. We also enhance the design to allow for correct operation of the multiplier using a residual adder, for non error resilient applications.