On reconfiguration-oriented approximate adder design and its application

  • Authors:
  • Rong Ye;Ting Wang;Feng Yuan;Rakesh Kumar;Qiang Xu

  • Affiliations:
  • The Chinese University of Hong Kong, Shatin, N.T., Hong Kong;The Chinese University of Hong Kong, Shatin, N.T., Hong Kong;The Chinese University of Hong Kong, Shatin, N.T., Hong Kong;University of Illinois at Urbana-Champaign;The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Approximate circuit designs allow us to tradeoff computation quality (e.g., accuracy) and computational effort (e.g., energy), by exploiting the inherent error-resilience of many applications. As the computation quality requirement of an application generally varies at runtime, it is preferable to be able to reconfigure approximate circuits to satisfy such needs and save unnecessary computational effort. In this paper, we present a reconfiguration-oriented design methodology for approximate circuits, and propose a reconfigurable approximate adder design that degrades computation quality gracefully. The proposed design methodology enables us to achieve better quality-effort tradeoff when compared to existing techniques, as demonstrated in the application of DCT computing.