Design of low-power high-speed truncation-error-tolerant adder and its application in digital signal processing

  • Authors:
  • Ning Zhu;Wang Ling Goh;Weija Zhang;Kiat Seng Yeo;Zhi Hui Kong

  • Affiliations:
  • School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In modern VLSI technology, the occurrence of all kinds of errors has become inevitable. By adopting an emerging concept in VLSI design and test, error tolerance (ET), a novel error-tolerant adder (ETA) is proposed. The ETA is able to ease the strict restriction on accuracy, and at the same time achieve tremendous improvements in both the power consumption and speed performance. When compared to its conventional counterparts, the proposed ETA is able to attain more than 65% improvement in the Power-Delay Product (PDP). One important potential application of the proposed ETA is in digital signal processing systems that can tolerate certain amount of errors.