Efficient reconfigurable techniques for VLSI arrays with 6-port switches

  • Authors:
  • Wu Jigang;Thambipillai Srikanthan;Heiko Schröder

  • Affiliations:
  • Nanyang Technological University, Singapore;Nanyang Technological University, Singapore;School of Computer Science and Information Technology, RMIT University, Melbourne, Australia

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes an efficient techniques to reconfigure a two-dimensional degradable very large scale integration/wafer scale integration (VLSI/WSI) array under the row and column routing constraints, which has been shown to be NP-complete. The proposed VLSI/WSI array consists of identical processing elements such as processors or memory cells embedded in a 6-port switch lattice in the form of a rectangular grid. It has been shown that the proposed VLSI structure with 6-port switches eliminates the need to incorporate internal bypass within processing elements and leads to notable increase in the harvest when compared with the one using 4-port switches. A new greedy rerouting algorithm and compensation approaches are also proposed to maximize harvest through reconfiguration. Experimental results show that the proposed VLSI array with 6-port switches consistently outperforms the most efficient alternative proposed in literature, toward maximizing the harvest in the presence of fault processing elements.