Conditions for avoiding controllability problems in distributed testing

  • Authors:
  • Jessica Chen;Lihua Duan

  • Affiliations:
  • School of Computer Science, University of Windsor, Windsor, Ont., Canada;School of Computer Science, University of Windsor, Windsor, Ont., Canada

  • Venue:
  • ICFEM'06 Proceedings of the 8th international conference on Formal Methods and Software Engineering
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Finite-state-machine-based conformance testing has been extensively studied in the literature in the context of centralized test architecture. With a distributed test architecture which involves multiple remote testers, the application of a test sequence may encounter controllability problems. This problem can be overcome by introducing additional external coordination messages exchanged among remote testers. Such an approach requires for extra resources for the communication among remote testers and sometimes suffers from unexpected delay. It is thus desirable to avoid the controllability problem by selecting suitable test sequences. However, this is not always possible. For some finite state machines, we cannot generate a test sequence without using external coordination messages and apply it without encountering controllability problems during testing. In this paper, we present sufficient and necessary conditions on a given finite state machine for constructing test sequences so that it does not involve external coordination messages and its application to the implementation under test is free from controllability problems.