A configuration system architecture supporting bit-stream compression for FPGAs

  • Authors:
  • Marco Della Torre;Usama Malik;Oliver Diessel

  • Affiliations:
  • School of Computer Science and Engineering, University of New South Wales, Sydney, Australia;School of Computer Science and Engineering, University of New South Wales, Sydney, Australia;School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

  • Venue:
  • ACSAC'05 Proceedings of the 10th Asia-Pacific conference on Advances in Computer Systems Architecture
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an investigation and design of an enhanced on-chip configuration memory system that can reduce the time to (re)configure an FPGA. The proposed system accepts configuration data in a compressed form and performs decompression internally. The resulting FPGA can be (re)configured in time proportional to the size of the compressed bit-stream. The compression technique exploits the redundancy present in typical configuration data. An analysis of configurations corresponding to a set of benchmark circuits reveals that data that controls the same types of configurable elements have a common byte that occurs at a significantly higher frequency. This common byte is simply broadcast to all instances of that element. This step is followed by byte updates if required. The new configuration system has modest hardware requirements and was observed to reduce reconfiguration time for the benchmark set by two-thirds on average.