Scalable wavelet coding for synthetic/natural hybrid images

  • Authors:
  • I. Sodagar;Hung-Ju Lee;P. Hatrack;Ya-Qin Zhang

  • Affiliations:
  • Multimedia Technol. Lab., Sarnoff Corp., Princeton, NJ;-;-;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes the texture representation scheme adopted for MPEG-4 synthetic/natural hybrid coding (SNHC) of texture maps and images. The scheme is based on the concept of multiscale zerotree wavelet entropy (MZTE) coding technique, which provides many levels of scalability layers in terms of either spatial resolutions or picture quality, MZTE, with three different modes (single-Q, multi-Q, and bilevel), provides much improved compression efficiency and fine-gradual scalabilities, which are ideal for hybrid coding of texture maps and natural images. The MZTE scheme is adopted as the baseline technique for the visual texture coding profile in both the MPEG-4 video group and SNHC group. The test results are presented in comparison with those coded by the baseline JPEG scheme for different types of input images, MZTE was also rated as one of the top five schemes in terms of compression efficiency in the JPEG2000 November 1997 evaluation, among 27 submitted proposals