Optimal configuration of a multicore server processor for managing the power and performance tradeoff

  • Authors:
  • Keqin Li

  • Affiliations:
  • Department of Computer Science, State University of New York, New Paltz, USA 12561

  • Venue:
  • The Journal of Supercomputing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of power and performance management for a multicore server processor in a cloud computing environment by optimal server configuration for a specific application environment. The motivation of the study is that such optimal virtual server configuration is important for dynamic resource provision in a cloud computing environment to optimize the power and performance tradeoff for certain specific type of applications. Our strategy is to treat a multicore server processor as an M/M/m queueing system with multiple servers. The system performance measures are the average task response time and the average power consumption. Two core speed and power consumption models are considered, namely, the idle-speed model and the constant-speed model. Our investigation includes justification of centralized management of computing resources, server speed constrained optimization, power constrained performance optimization, and performance constrained power optimization. Our main results are (1) cores should be managed in a centralized way to provide the highest performance without consumption of more energy in cloud computing; (2) for a given server speed constraint, fewer high-speed cores perform better than more low-speed cores; furthermore, there is an optimal selection of server size and core speed which can be obtained analytically, such that a multicore server processor consumes the minimum power; (3) for a given power consumption constraint, there is an optimal selection of server size and core speed which can be obtained numerically, such that the best performance can be achieved, i.e., the average task response time is minimized; (4) for a given task response time constraint, there is an optimal selection of server size and core speed which can be obtained numerically, such that minimum power consumption can be achieved while the given performance guarantee is maintained.