Energy-efficient low-latency 600 MHz FIR with high-overdrive charge-recovery logic

  • Authors:
  • Jerry C. Kao;Wei-Hsiang Ma;Visvesh S. Sathe;Marios Papaefthymiou

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI;Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI;Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI;Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a 14-tap 8-bit finite impulse response (FIR) test-chip that has been designed using a novel charge-recovery logic family, called Enhanced Boost Logic (EBL), to achieve high-speed and low-power operation. Compared to previous charge-recovery circuitry, EBL achieves increased gate overdrive, resulting in low latency overhead over static CMOS design. The EBL-based FIR has been designed with only 1.5 cycles of additional latency over its static CMOS counterpart, while consuming 21% less energy per cycle, based on post-layout simulations of the two designs. The test-chip has been fabricated in a 0.13 µm CMOS process with a fully-integrated 3 nH inductor. Correct function has been validated in the 365-600 MHz range. At its resonant frequency of 466 MHz, the test-chip dissipates 39.1 mW with a 93.6 nW/MHz/Tap/InBit/CoeffBit figure of merit, recovering 45% of the energy supplied to it every cycle.