A sensor-assisted self-authentication framework for hardware trojan detection

  • Authors:
  • Min Li;Azadeh Davoodi;Mohammad Tehranipoor

  • Affiliations:
  • University of Wisconsin at Madison, WI;University of Wisconsin at Madison, WI;University of Connecticut, CT

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work offers a framework which does not rely on a Golden IC (GIC) during hardware Trojan (HT) detection. GIC is a Trojan-free IC which is required, in all existing HT frameworks, as a reference point to verify the responses obtained from an IC under authentication. However, identifying a GIC is not a trivial task. A GIC may not even exist, since all the fabricated ICs may be HT-infected. We propose a framework which is based on adding a set of detection sensors to a design which are integrated in the free spaces on the layout and fabricated on the same die. After fabrication, a self-authentication procedure is proposed in order to determine if a Trojan is inserted in a set of arbitrarily-selected paths in the design. The detection process uses on-chip measurements on the sensors and the design paths in order to evaluate the correlation between a set of actual and predicted delay ranges. Error in the on-chip measurement infrastructure is considered. If our framework determines that a Trojan is (or is not) inserted on a considered path, then it is accurate. In our computational experiments, conducted for challenging cases of small Trojan circuits in the presence of die-to-die and within-die process variations, we report a high detection rate to show its effectiveness in realizing a self-authentication process which is independent of a GIC.