FANCI: identification of stealthy malicious logic using boolean functional analysis

  • Authors:
  • Adam Waksman;Matthew Suozzo;Simha Sethumadhavan

  • Affiliations:
  • Columbia University, New York, New York, USA;Columbia University, New York, New York, USA;Columbia University, New York, New York, USA

  • Venue:
  • Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hardware design today bears similarities to software design. Often vendors buy and integrate code acquired from third-party organizations into their designs, especially in embedded/system-on-chip designs. Currently, there is no way to determine if third-party designs have built-in backdoors that can compromise security after deployment. The key observation we use to approach this problem is that hardware backdoors incorporate logic that is nearly-unused, i.e. stealthy. The wires used in stealthy backdoor circuits almost never influence the outputs of those circuits. Typically, they do so only when triggered using external inputs from an attacker. In this paper, we present FANCI, a tool that flags suspicious wires, in a design, which have the potential to be malicious. FANCI uses scalable, approximate, boolean functional analysis to detect these wires. Our examination of the TrustHub hardware backdoor benchmark suite shows that FANCI is able to flag all suspicious paths in the benchmarks that are associated with backdoors. Unlike prior work in the area, FANCI is not hindered by incomplete test suite coverage and thus is able to operate in practice without false negatives. Furthermore, FANCI reports low false positive rates: less than 1% of wires are reported as suspicious in most cases. All TrustHub designs were analyzed in a day or less. We also analyze a backdoor-free out-of-order microprocessor core to demonstrate applicability beyond benchmarks.