A locality-aware memory hierarchy for energy-efficient GPU architectures

  • Authors:
  • Minsoo Rhu;Michael Sullivan;Jingwen Leng;Mattan Erez

  • Affiliations:
  • University of Texas at Austin, Austin, Texas;University of Texas at Austin, Austin, Texas;University of Texas at Austin, Austin, Texas;University of Texas at Austin, Austin, Texas

  • Venue:
  • Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

As GPU's compute capabilities grow, their memory hierarchy increasingly becomes a bottleneck. Current GPU memory hierarchies use coarse-grained memory accesses to exploit spatial locality, maximize peak bandwidth, simplify control, and reduce cache meta-data storage. These coarse-grained memory accesses, however, are a poor match for emerging GPU applications with irregular control flow and memory access patterns. Meanwhile, the massive multi-threading of GPUs and the simplicity of their cache hierarchies make CPU-specific memory system enhancements ineffective for improving the performance of irregular GPU applications. We design and evaluate a locality-aware memory hierarchy for throughput processors, such as GPUs. Our proposed design retains the advantages of coarse-grained accesses for spatially and temporally local programs while permitting selective fine-grained access to memory. By adaptively adjusting the access granularity, memory bandwidth and energy are reduced for data with low spatial/temporal locality without wasting control overheads or prefetching potential for data with high spatial locality. As such, our locality-aware memory hierarchy improves GPU performance, energy-efficiency, and memory throughput for a large range of applications.