The dynamic granularity memory system

  • Authors:
  • Doe Hyun Yoon;Min Kyu Jeong;Michael Sullivan;Mattan Erez

  • Affiliations:
  • Hewlett-Packard Labs;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin

  • Venue:
  • Proceedings of the 39th Annual International Symposium on Computer Architecture
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Chip multiprocessors enable continued performance scaling with increasingly many cores per chip. As the throughput of computation outpaces available memory bandwidth, however, the system bottleneck will shift to main memory. We present a memory system, the dynamic granularity memory system (DGMS), which avoids unnecessary data transfers, saves power, and improves system performance by dynamically changing between fine and coarse-grained memory accesses. DGMS predicts memory access granularities dynamically in hardware, and does not require software or OS support. The dynamic operation of DGMS gives it superior ease of implementation and power efficiency relative to prior multi-granularity memory systems, while maintaining comparable levels of system performance.