Decomposition and technology mapping of speed-independent circuits using Boolean relations

  • Authors:
  • Jordi Cortadella;Michael Kishinevsky;Alex Kondratyev;Luciano Lavagno;Enric Pastor;Alex Yakovlev

  • Affiliations:
  • Univ. Politècnica de Catalunya, Barcelona, Spain;The University of Aizu, Japan;The University of Aizu, Japan;Politecnico di Torino, Italy;Univ. Politècnica de Catalunya, Barcelona, Spain;University of Newcastle upon Tyne, United Kingdom

  • Venue:
  • ICCAD '97 Proceedings of the 1997 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

Presents a new technique for the decomposition and technology mapping of speed-independent circuits. An initial circuit implementation is obtained in the form of a netlist of complex gates, which may not be available in the design library. The proposed method iteratively performs Boolean decomposition of each such gate F into a two-input combinational or sequential gate G, which is available in the library, and two gates H/sub 1/ and H/sub 2/, which are simpler than F, while preserving the original behavior and speed-independence of the circuit. To extract functions for H/sub 1/ and H/sub 2/, the method uses Boolean relations, as opposed to the less powerful algebraic factorization approach used in previous methods. After logic decomposition, overall library matching and optimization is carried out. Logic resynthesis, performed after speed-independent signal insertion for H/sub 1/ and H/sub 2/, allows for the sharing of decomposed logic. Overall, this method is more general than existing techniques based on restricted decomposition architectures, and thereby leads to better results in technology mapping.