A minimum total power methodology for projecting limits on CMOS GSI

  • Authors:
  • Azeez J. Bhavnagarwala;Blanca L. Austin;Keith A. Bowman;James D. Meindl

  • Affiliations:
  • Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems - Special section on low-power electronics and design
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

A circuit design methodology minimizing total power drain of a static complementary metal-oxide-semiconductor (CMOS) random logic network for a prescribed performance, operating temperature range, and short channel threshold voltage rolloff is investigated. Physical, continuous, smooth, and compact "transregional" MOSFET drain current models that consider high-field effects in scaled devices and permit tradeoffs between saturation drive current and subthreshold leakage current are employed to model CMOS circuit performance and power dissipation at low voltages. Transregional models are used in conjunction with physical short channel MOSFET threshold voltage rolloff models and stochastic interconnect distributions to project optimal supply voltages, threshold voltages, and device channel widths minimizing total power dissipated by CMOS logic circuits for each National Technology Roadmap for Semiconductors (NTRS) technology generation. Optimum supply voltage, corresponding to minimum total power dissipation, is projected to scale to 510 mV for the 50-nm 10-GHz CMOS generation in the year 2012. Techniques exploiting datapath parallelism to further scale the supply voltage are shown to offer decreasing reductions in power dissipation with technology scaling.