Enhancing the performance of 16-bit code using augmenting instructions

  • Authors:
  • Arvind Krishnaswamy;Rajiv Gupta

  • Affiliations:
  • The University of Arizona, Tucson, AZ;The University of Arizona, Tucson, AZ

  • Venue:
  • Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.02

Visualization

Abstract

In the embedded domain, memory usage and energy consumption are critical constraints. Dual width instruction set embedded processors such as the ARM provide a 16-bit instruction set in addition to the 32-bit instruction set to address these concerns. Using 16-bit instructions one can achieve code size reduction and I-cache energy savings at the cost of performance. We have observed that throughout 16-bit Thumb code there exist Thumb instruction pairs that are equivalent to a single ARM instruction. We have developed an approach which uses combination of compiler and architectural support to exploit the above property for improving performance of 16-bit code. We enhance the Thumb instruction set by incorporating Augmenting eXtensions (AX). The task of the compiler is to identify pairs of Thumb instructions that can be safely combined and executed as single ARM instructions. The compiler replaces such pairs of Thumb instructions by AX+Thumb instruction pairs. The AX instruction is coalesced with the immediately following Thumb instruction to generate a single ARM instruction at decode time. Thus, using AX instructions, the compiler can both generate compact 16-bit code and provide hardware with information needed to produce better performing 32-bit code.