Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point

  • Authors:
  • Anders Heyden;Kalle Astrom

  • Affiliations:
  • -;-

  • Venue:
  • CVPR '97 Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97)
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper the special case of reconstruction from image sequences taken by cameras with skew equal to 0 and aspect ratio equal to has been treated. These type of cameras, here called cameras with Euclidean image planes, represent rigid projections where neither the principal point nor the focal length is known. It will be shown that it is possible to reconstruct an unknown object from images taken by a camera with Euclidean image plane up to similarity transformations, i.e., Euclidean transformations plus changes in the global scale. An algorithm, using bundle adjustment techniques, has been implemented. The performance of the algorithm is shown on simulated data.