Tracking moving devices with the cricket location system

  • Authors:
  • Adam Smith;Hari Balakrishnan;Michel Goraczko;Nissanka Priyantha

  • Affiliations:
  • MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA;MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA;MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA;MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA

  • Venue:
  • Proceedings of the 2nd international conference on Mobile systems, applications, and services
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the problem of tracking a moving device under two indoor location architectures: an active mobile architecture and a passive mobile architecture. In the former, the infrastructure has receivers at known locations, which estimate distances to a mobile device based on an active transmission from the device. In the latter, the infrastructure has active beacons that periodically transmit signals to a passively listening mobile device, which in turn estimates distances to the beacons. Because the active mobile architecture receives simultaneous distance estimates at multiple receivers from the mobile device, it is likely to perform better tracking than the passive mobile system in which the device obtains only one distance estimate at a time and may have moved between successive estimates. However, an passive mobile system scales better with the number of mobile devices and puts users in control of whether their whereabouts are tracked.We answer the following question: How do the two architectures compare in tracking performance? We find that the active mobile architecture performs better at tracking, but that the passive mobile architecture has acceptable performance; moreover, we devise a hybrid approach that preserves the benefits of the passive mobile architecture while simultaneously providing the same performance as an active mobile system, suggesting a viable practical solution to the three goals of scalability, privacy, and tracking agility.