Heterogeneous MP-SoC: the solution to energy-efficient signal processing

  • Authors:
  • Tim Kogel;Heinrich Meyr

  • Affiliations:
  • CoWare Inc.;CoWare Inc. and Aachen University of Technology, Germany

  • Venue:
  • Proceedings of the 41st annual Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

To meet conflicting flexibility, performance and cost constraints of demanding signal processing applications, future designs in this domain will contain an increasing number of application specific programmable units combined with complex communication and memory infrastructures. Novel architecture trends like Application Specific Instruction-set Processors (ASIPs) as well as customized buses and Network-on-Chip based communication promise enormous potential for optimization. However, state-of-the-art tooling and design practice is not in a shape to take advantage of this advances in computer architecture and silicon technology. Currently, EDA industry develops two diverging strategies to cope with the design complexity of such application specific, heterogeneous MP-SoC platforms. First, the IP-driven approach emphasizes the composition of MP-SoC platforms from configurable off-the-shelf Intellectual Property blocks. On the other hand, the design-driven approach strives to take design efficiency to the required level by use of system level design methodologies and IP generation tools. In this paper, we discuss technical and economical aspects of both strategies. Based on the analysis of recent trends in computer architecture and system level design, we envision a hand-in-hand approach of signal processing platform architectures and design metholodgy to conquer the complexity crisis in emerging MP-SoC developments.