Mercury: supporting scalable multi-attribute range queries

  • Authors:
  • Ashwin R. Bharambe;Mukesh Agrawal;Srinivasan Seshan

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range-based searches. Mercury differs from previous range-based query systems in that it supports multiple attributes as well as performs explicit load balancing. To guarantee efficient routing and load balancing, Mercury uses novel light-weight sampling mechanisms for uniformly sampling random nodes in a highly dynamic overlay network. Our evaluation shows that Mercury is able to achieve its goals of logarithmic-hop routing and near-uniform load balancing.We also show that Mercury can be used to solve a key problem for an important class of distributed applications: distributed state maintenance for distributed games. We show that the Mercury-based solution is easy to use, and that it reduces the game's messaging overheard significantly compared to a naïve approach.