Reducing Power Consumption for High-Associativity Data Caches in Embedded Processors

  • Authors:
  • Dan Nicolaescu;Alex Veidenbaum;Alex Nicolau

  • Affiliations:
  • University of California at Irvine;University of California at Irvine;University of California at Irvine

  • Venue:
  • DATE '03 Proceedings of the conference on Design, Automation and Test in Europe - Volume 1
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern embedded processors use data caches with higher and higher degrees of associativity in order to increase performance. A set-associative data cache consumes a significant fraction of the total power budget in such embedded processors. This paper describes a technique for reducing the D-cache power consumption and shows its impact on power and performance of an embedded processor. The technique utilizes cache line address locality to determine (rather than predict) the cache way prior to the cache access. It thus allows only the desired way to be accessed for both tags and data. The proposed mechanism is shown to reduce the average L1 data cache power consumption when running the MiBench embedded benchmark suite for 8, 16 and 32-way set-associate caches by, respectively, an average of 66%, 72% and 76%. The absolute power savings from this technique increase significantly with associativity. The design has no impact on performance and, given that it does not have mis-prediction penalties, it does not introduce any new non-deterministic behavior in program execution.