Continual flow pipelines

  • Authors:
  • Srikanth T. Srinivasan;Ravi Rajwar;Haitham Akkary;Amit Gandhi;Mike Upton

  • Affiliations:
  • Intel Corporation;Intel Corporation;Intel Corporation;Intel Corporation;Intel Corporation

  • Venue:
  • ASPLOS XI Proceedings of the 11th international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new non-blocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must be addressed, and we propose a unified solution. The non-blocking property of CFP keeps key processor structures affecting cycle time and power (scheduler, register file), and die size (second level cache) small. The memory latency-tolerant CFP core allows multiple cores on a single die while outperforming current processor cores for single-thread applications.