Estimation of Switching Activity in Sequential Circuits Using Dynamic Bayesian Networks

  • Authors:
  • Sanjukta Bhanja;Karthikeyan Lingasubramanian;N. Ranganathan

  • Affiliations:
  • University of South Florida;University of South Florida;University of South Florida

  • Venue:
  • VLSID '05 Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

We propose a novel, non-simulative, probabilistic model for switching activity in sequential circuits, capturing both spatio-temporal correlations at internal nodes and higher order temporal correlations due to feedback. This model, which we refer to as the temporal dependency model (TDM), can be constructed from the logic structure and is shown to be a dynamic Bayesian Network. Dynamic Bayesian Networks are extremely powerful in modeling high order temporal as well as spatial correlations; it is an exact model for the underlying conditional independencies. The attractive feature of this graphical representation of the joint probability function is that not only does it make the dependency relationships amongst the nodes explicit but it also serves as a computational mechanism for probabilistic inference. We report average errors in switching probability of 0.006, with errors tightly distributed around the mean error values, onISCASý89 benchmark circuits involving up to 10000 signals.