Vortex fluid for gaseous phenomena

  • Authors:
  • Sang Il Park;Myoung Jun Kim

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Ewha Womans University, Korea

  • Venue:
  • Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a method for visual simulation of gaseous phenomena based on the vortex method. This method uses a localized vortex flow as a basic building block and combines those blocks to describe a whole flow field. As a result, we achieve computational efficiency by concentrating only on a localized vorticity region while generating dynamic swirling fluid flows. Based on the Lagrangian framework, we resolve various boundary conditions. By exploiting the panel method, we satisfy the no-through boundary condition in a Lagrangian way. A simple and effective way of handling the no-slip boundary condition is also presented. In treating the no-slip boundary condition, we allow a user to control the roughness of the boundary surface, which further improves visual realism.