Fast animation of turbulence using energy transport and procedural synthesis

  • Authors:
  • Rahul Narain;Jason Sewall;Mark Carlson;Ming C. Lin

  • Affiliations:
  • UNC Chapel Hill;UNC Chapel Hill;Dreamworks Animation SKG;UNC Chapel Hill

  • Venue:
  • ACM SIGGRAPH Asia 2008 papers
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel technique for the animation of turbulent fluids by coupling a procedural turbulence model with a numerical fluid solver to introduce subgrid-scale flow detail. From the large-scale flow simulated by the solver, we model the production and behavior of turbulent energy using a physically motivated energy model. This energy distribution is used to synthesize an incompressible turbulent velocity field, whose features show plausible temporal behavior through a novel Lagrangian approach for advected noise. The synthesized turbulent flow has a dynamical effect on the large-scale flow, and produces visually plausible detailed features on both gaseous and free-surface liquid flows. Our method is an order of magnitude faster than full numerical simulation of equivalent resolution, and requires no manual direction.