Area optimization for leakage reduction and thermal stability in nanometer scale technologies

  • Authors:
  • Ja Chun Ku;Yehea Ismail

  • Affiliations:
  • Northwestern University, Evanston, IL;Northwestern University, Evanston, IL

  • Venue:
  • ASP-DAC '06 Proceedings of the 2006 Asia and South Pacific Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditionally, minimum possible area of a VLSI layout is considered the best for delay and power minimization due to decreased interconnect capacitance. This paper shows however that the use of minimum area does not result in the minimum power and/or delay in nanometer scale technologies due to thermal effects, and in some cases, may result in thermal runaway. A methodology using area as a design parameter to reduce the leakage power, and prevent thermal runaway is presented. A 16-bit adder example in a 70nm technology shows a total power savings of 17% with 15% increase in area, and no increase in delay. The power savings using this technique are expected to increase in future technologies.