Managing bounded code caches in dynamic binary optimization systems

  • Authors:
  • Kim Hazelwood;Michael D. Smith

  • Affiliations:
  • University of Virginia, Charlotteville, VA;Harvard University, Cambridge, MA

  • Venue:
  • ACM Transactions on Architecture and Code Optimization (TACO)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dynamic binary optimizers store altered copies of original program instructions in software-managed code caches in order to maximize reuse of transformed code. Code caches store code blocks that may vary in size, reference other code blocks, and carry a high replacement overhead. These unique constraints reduce the effectiveness of conventional cache management policies. Our work directly addresses these unique constraints and presents several contributions to the code-cache management problem. First, we show that evicting more than the minimum number of code blocks from the code cache results in less run-time overhead than the existing alternatives. Such granular evictions reduce overall execution time, as the fixed costs of invoking the eviction mechanism are amortized across multiple cache insertions. Second, a study of the ideal lifetimes of dynamically generated code blocks illustrates the benefit of a replacement algorithm based on a generational heuristic. We describe and evaluate a generational approach to code cache management that makes it easy to identify long-lived code blocks and simultaneously avoid any fragmentation because of the eviction of short-lived blocks. Finally, we present results from an implementation of our generational approach in the DynamoRIO framework and illustrate that, as dynamic optimization systems become more prevalent, effective code cache-management policies will be essential for reliable, scalable performance of modern applications.