Adaptive VP decay: making value predictors leakage-efficient designs for high performance processors

  • Authors:
  • Juan M. Cebrian;Juan L. Aragon;Jose M Garcia;Stefanos Kaxiras

  • Affiliations:
  • University of Murcia, Murcia, Spain;University of Murcia, Murcia, Spain;University of Murcia, Murcia, Spain;University of Patras, Patras, Greece

  • Venue:
  • Proceedings of the 4th international conference on Computing frontiers
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Energy-efficient microprocessor designs are one of the major concerns in both high performance and embedded processor domains. Furthermore, as process technology advances toward deep submicron, static power dissipation becomes a new challenge to address, especially for large on-chip array structures such as caches or prediction tables. Value prediction emerged in the recent past as a very effective way of increasing processor performance by overcoming data dependences. The more accurate the value predictor is the more performance is obtained, at the expense of becoming a source of power consumption and a thermal hot spot, and therefore increasing its leakage. Recent techniques, aimed at reducing the leakage power of array structures such as caches, either switch off (non-state preserving) or reduce the voltage level (state-preserving) of unused array portions.In this paper we propose the design of leakage-efficient value predictors by applying adaptive decay techniques in order to disable unused entries in the prediction tables. As value predictors are implemented as non-tagged structures an adaptive decay scheme has no way to precisely determine the induced miss-ratio due to prematurely decaying an entry. This paper explores adaptive decay strategies suited for the particularities of value predictors (Stride, DFCM and FCM) studying the tradeoffs for these prediction structures, that exhibit different pattern access behaviour than caches, in order to reduce their leakage energy efficiently compromising neither VP accuracy nor the speedup provided. Results show average leakage energy reductions of 52%, 70% and 80% for the Stride, DFCM and FCM value predictors of 20 KB respectively.