Reconfigurable hybrid interconnection for static and dynamic scientific applications

  • Authors:
  • Shoaib Kamil;Ali Pinar;Daniel Gunter;Michael Lijewski;Leonid Oliker;John Shalf

  • Affiliations:
  • Lawrence Berkeley National Lab / CS Dept. UC Berkeley, Berkeley, CA;Lawrence Berkeley National Lab, Berkeley, CA;Lawrence Berkeley National Lab, Berkeley, CA;Lawrence Berkeley National Lab, Berkeley, CA;Lawrence Berkeley National Lab, Berkeley, CA;Lawrence Berkeley National Lab, Berkeley, CA

  • Venue:
  • Proceedings of the 4th international conference on Computing frontiers
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

As we enter the era of peta-scale computing, system architects must plan for machines composed of tens or even hundreds of thousands of processors. Although fully connected networks such as fat-tree configurations currently dominate HPC interconnect designs, such approaches are inadequate for ultra-scale concurrencies due to the superlinear growth of component costs. Traditional low-degree interconnect topologies, such as 3D tori, have reemerged as a competitive solution due to the linear scaling of system components relative to the node count; however, such networks are poorly suited for the requirements of many scientific applications at extreme concurrencies. To address these limitations, we propose HFAST, a hybrid switch architecture that uses circuit switches to dynamically reconfigure lower-degree interconnects to suit the topological requirements of a given scientific application. This work presents several new research contributions. We develop an optimization strategy for HFAST mappings and demonstrate that efficiency gains can be attained across a broad range of static numerical computations. Additionally, we conduct an extensive analysis of the communication characteristics of a dynamically adapting mesh calculation and show that the HFAST approach can achieve significant advantages, even when compared with traditional fat-tree configurations. Overall results point to the promising potential of utilizing hybrid reconfigurable networks to interconnect future peta-scale architectures, for both static and dynamically adapting applications.