A self-organizing defect tolerant SIMD architecture

  • Authors:
  • Jaidev Patwardhan;Chris Dwyer;Alvin R. Lebeck

  • Affiliations:
  • MIPS Technologies;Department of Electrical and Computer Engineering, Duke University, Durham, NC;Department of Computer Science, Duke University, Durham, NC

  • Venue:
  • ACM Journal on Emerging Technologies in Computing Systems (JETC)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The continual decrease in transistor size (through either scaled CMOS or emerging nanotechnologies) promises to usher in an era of tera to peta-scale integration but with increasing defects. Regardless of fabrication methodology (top-down or bottom-up), defect-tolerant architectures are necessary to exploit the full potential of future increased device densities. This article explores a defect-tolerant SIMD architecture (SOSA) that self-organizes a large number of limited capability nodes with high defect rates into SIMD processing elements. Simulation results show that SOSA matches or exceeds the performance of conventional systems for moderate to large problems, but with lower power density.