An evolutionary approach to collective communication scheduling

  • Authors:
  • Jiri Jaros;Milos Ohlidal;Vaclav Dvorak

  • Affiliations:
  • Faculty of Information Technology, Brno, Czech Rep;Faculty of Information Technology, Brno, Czech Rep;Faculty of Information Technology, Brno, Czech Rep

  • Venue:
  • Proceedings of the 9th annual conference on Genetic and evolutionary computation
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we describe two evolutionary algorithms aimed at scheduling collective communications on interconnection networks of parallel computers. To avoid contention for links and associated delays, collective communications proceed in synchronized steps. Minimum number of steps is sought for the given network topology, wormhole (pipelined) switching, minimum routing and given sets of sender and/or receiver nodes. Used algorithms are able not only re-invent optimum schedules for known symmetric topologies like hyper-cubes, but they can find schedules even for any asymmetric or irregular topologies in case of general many-to-many collective communications. In most cases does the number of steps reach the theoretical lower bound for the given type of collective communication; if it does not, non-minimum routing can provide further improvement. Optimum schedules may serve for writing high-performance communication routines for application-specific networks on chip or for development of communication libraries in case of general-purpose interconnection networ.