Evolutionary optimization of multistage interconnection networks performance

  • Authors:
  • Jiri Jaros

  • Affiliations:
  • Brno University of Technology, Faculty of Information Technology, Brno, Czech Rep

  • Venue:
  • Proceedings of the 11th Annual conference on Genetic and evolutionary computation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The paper deals with optimization of collective communications on multistage interconnection networks (MINs). In the experimental work, unidirectional MINs like Omega, Butterfly and Clos are investigated. The study is completed by bidirectional binary, fat and full binary tree. To avoid link contentions and associated delays, collective communications are processed in synchronized steps. Minimum number of steps is sought for the given network topology, wormhole switching, minimum routing and given sets of sender and/or receiver nodes. Evolutionary algorithm proposed in this paper is able to design optimal schedules for broadcast and scatter collective communications. Acquired optimum schedules can simplify the consecutive writing high-performance communication routines for application-specific networks on chip, or for development of communication libraries in case of general-purpose multistage interconnection networks.