CriAS: a performance-driven criticality-aware synthesis flow for on-chip multicycle communication architecture

  • Authors:
  • Chia-I Chen;Juinn-Dar Huang

  • Affiliations:
  • National Chiao Tung University, Hsinchu, Taiwan;National Chiao Tung University, Hsinchu, Taiwan

  • Venue:
  • Proceedings of the 2009 Asia and South Pacific Design Automation Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In deep submicron era, wire delay is no longer negligible and is dominating the system performance. Several state-of-the-art architectural synthesis flows have been proposed for the distributed register architectures to cope with the increasing wire delay by allowing on-chip multicycle communication. In this paper, we present a new performance-driven criticality-aware synthesis flow CriAS targeting regular distributed register architectures. CriAS features a hierarchical binding strategy and a coarse-grained placer for minimizing the number of critical global data transfers. The key ideas are to take time criticality as the major concern at earlier binding stages before the detailed physical placement information is available, and to preserve the locality of closely related critical components in the later placement phase. The experimental results show that 19% overall performance improvement can be achieved on average as compared to the previous work.