Enrichment textures for detailed cutting of shells

  • Authors:
  • Peter Kaufmann;Sebastian Martin;Mario Botsch;Eitan Grinspun;Markus Gross

  • Affiliations:
  • ETH Zurich;ETH Zurich;Bielefeld University;Columbia University;ETH Zurich

  • Venue:
  • ACM SIGGRAPH 2009 papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a method for simulating highly detailed cutting and fracturing of thin shells using low-resolution simulation meshes. Instead of refining or remeshing the underlying simulation domain to resolve complex cut paths, we adapt the extended finite element method (XFEM) and enrich our approximation by customdesigned basis functions, while keeping the simulation mesh unchanged. The enrichment functions are stored in enrichment textures, which allows for fracture and cutting discontinuities at a resolution much finer than the underlying mesh, similar to image textures for increased visual resolution. Furthermore, we propose harmonic enrichment functions to handle multiple, intersecting, arbitrarily shaped, progressive cuts per element in a simple and unified framework. Our underlying shell simulation is based on discontinuous Galerkin (DG) FEM, which relaxes the restrictive requirement of C1 continuous basis functions and thus allows for simpler, C0 continuous XFEM enrichment functions.