The UnMousePad: an interpolating multi-touch force-sensing input pad

  • Authors:
  • Ilya Rosenberg;Ken Perlin

  • Affiliations:
  • New York University;New York University

  • Venue:
  • ACM SIGGRAPH 2009 papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.02

Visualization

Abstract

Recently, there has been great interest in multi-touch interfaces. Such devices have taken the form of camera-based systems such as Microsoft Surface [de los Reyes et al. 2007] and Perceptive Pixel's FTIR Display [Han 2005] as well as hand-held devices using capacitive sensors such as the Apple iPhone [Jobs et al. 2008]. However, optical systems are inherently bulky while most capacitive systems are only practical in small form factors and are limited in their application since they respond only to human touch and are insensitive to variations in pressure [Westerman 1999]. We have created the UnMousePad, a flexible and inexpensive multitouch input device based on a newly developed pressure-sensing principle called Interpolating Force Sensitive Resistance. IFSR sensors can acquire high-quality anti-aliased pressure images at high frame rates. They can be paper-thin, flexible, and transparent and can easily be scaled to fit on a portable device or to cover an entire table, floor or wall. The UnMousePad can sense three orders of magnitude of pressure variation, and can be used to distinguish multiple fingertip touches while simultaneously tracking pens and styli with a positional accuracy of 87 dpi, and can sense the pressure distributions of objects placed on its surface. In addition to supporting multi-touch interaction, IFSR is a general pressure imaging technology that can be incorporated into shoes, tennis racquets, hospital beds, factory assembly lines and many other applications. The ability to measure high-quality pressure images at low cost has the potential to dramatically improve the way that people interact with machines and the way that machines interact with the world.