A shape feature based simplification method for deforming meshes

  • Authors:
  • Shixue Zhang;Enhua Wu

  • Affiliations:
  • Dept. of Computer and Information Science, University of Macau, Macao, China;Dept. of Computer and Information Science, University of Macau, Macao, China and State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences, China

  • Venue:
  • GMP'08 Proceedings of the 5th international conference on Advances in geometric modeling and processing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Although deforming surfaces are frequently used in numerous domains, only few works have been proposed until now for simplifying such data. In this paper, we propose a new method for generating progressive deforming meshes based on shape feature analysis and deformation area preservation. By computing the curvature and torsion of each vertex in the original model, we add the shape feature factor to its quadric error metric when calculating each QEM edge collapse cost. In order to preserve the areas with large deformation, we add deformation degree weight to the aggregated quadric errors when computing the unified edge contraction sequence. Finally, the edge contraction order is slightly adjusted to further reduce the geometric distortion for each frame. Our approach is fast, easy to implement, and as a result good quality dynamic approximations with well-preserved fine details can be generated at any given frame.