Re-architecting DRAM memory systems with monolithically integrated silicon photonics

  • Authors:
  • Scott Beamer;Chen Sun;Yong-Jin Kwon;Ajay Joshi;Christopher Batten;Vladimir Stojanović;Krste Asanović

  • Affiliations:
  • University of California, Berkeley, CA, USA;Massachusetts Institute of Technology, Cambridge, MA, USA;University of California, Berkeley, CA, USA;Boston University, Boston, MA, USA;Cornell University, Ithaca, NY, USA;Massachusetts Institute of Technology, Cambridge, MA, USA;University of California, Berkeley, CA, USA

  • Venue:
  • Proceedings of the 37th annual international symposium on Computer architecture
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The performance of future manycore processors will only scale with the number of integrated cores if there is a corresponding increase in memory bandwidth. Projected scaling of electrical DRAM architectures appears unlikely to suffice, being constrained by processor and DRAM pin-bandwidth density and by total DRAM chip power, including off-chip signaling, cross-chip interconnect, and bank access energy. In this work, we redesign the DRAM main memory system using a proposed monolithically integrated silicon photonics technology and show that our photonically interconnected DRAM (PIDRAM) provides a promising solution to all of these issues. Photonics can provide high aggregate pin-bandwidth density through dense wavelength-division multiplexing. Photonic signaling provides energy-efficient communication, which we exploit to not only reduce chip-to-chip interconnect power but to also reduce cross-chip interconnect power by extending the photonic links deep into the actual PIDRAM chips. To complement these large improvements in interconnect bandwidth and power, we decrease the number of bits activated per bank to improve the energy efficiency of the PIDRAM banks themselves. Our most promising design point yields approximately a 10x power reduction for a single-chip PIDRAM channel with similar throughput and area as a projected future electrical-only DRAM. Finally, we propose optical power guiding as a new technique that allows a single PIDRAM chip design to be used efficiently in several multi-chip configurations that provide either increased aggregate capacity or bandwidth.