Experimenting with real time simulation parameters for fluid model of soft bodies

  • Authors:
  • Jaruwan Mesit;Ratan K. Guha

  • Affiliations:
  • University of Central Florida, Orlando, Florida;University of Central Florida, Orlando, Florida

  • Venue:
  • SpringSim '10 Proceedings of the 2010 Spring Simulation Multiconference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In soft body simulation with fluid modeling, smooth particle hydrodynamics (SPH) is one of the most efficient methods to simulate the soft body for real time applications. In this paper, we introduce a general model of soft bodies with SPH fluid modeling as one of the components for interaction among particles. The fluid force in SPH depends on the density of neighboring fluid particles in the kernel of the considered particle. The fluid force is related to fluid attributes such as fluid density, fluid pressure, and fluid viscosity. Computation becomes faster if the neighboring fluid particles are known during the computations of the fluid attributes. In our simulation of soft body model, the kernels of the fluid attributes are identical, and hence we use the same neighboring fluid particles to evaluate the fluid attributes. In this paper we introduce partitioning and hashing schemes to identify the neighboring fluid particles for SPH to compute the fluid force in the soft body simulation. The suitable parameters for the partitioning and hashing schemes are presented for the modeling. Experimental results show that the grid based scheme can reduce time computation in SPH for fluid modeling in real time applications. We also present a result of a soft body in which the model includes all forces.