Modeling and estimation of power supply noise using linear programming

  • Authors:
  • Farshad Firouzi;Saman Kiamehr;Mehdi B. Tahoori

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power supply noise in nano-scale VLSI is one of the design concerns. Due to switching current of various logic gates, the actual supply voltage seen by different devices fluctuates, causing extra delays and ultimately intermittent faults during operation. Therefore, accurate estimation of worst case scenario, maximum noise and the vectors causing it, is extremely important for design, verification, and manufacturing test steps. In this paper we present a mixed-integer linear programming modeling of power supply noise in digital circuits to obtain fast and accurate solutions. Compared with accurate SPICE simulations of random vectors for a set of benchmark circuits, the proposed approach can achieve 13115x speedup while obtains 2.7% more optimization in average.