Analysis of precision for scaling the intermediate variables in fixed-point arithmetic circuits

  • Authors:
  • O. Sarbishei;K. Radecka

  • Affiliations:
  • McGill University, Montreal, Canada;McGill University, Montreal, Canada

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a new technique for scaling the intermediate variables in implementing fixed-point polynomial-based arithmetic circuits. Analysis of precision has been used first to set the input and coefficient bit-widths of the polynomial so that a given error bound is satisfied. Then, we present an efficient approach to scale and truncate different intermediate variables with no need of re-computing precision at each stage. After applying it to all the intermediate variables, a final precision computation and sensitivity analysis is performed to set the final values of truncation bits so that the given error bound remains satisfied. Experimental results on a set of polynomial benchmarks show the robustness and efficiency of the proposed technique.