Multilevel Huffman Coding: An Efficient Test-Data Compression Method for IP Cores

  • Authors:
  • X. Kavousianos;E. Kalligeros;D. Nikolos

  • Affiliations:
  • Comput. Sci. Dept., Ioannina Univ.;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.03

Visualization

Abstract

A new test-data compression method suitable for cores of unknown structure is introduced in this paper. The proposed method encodes the test data provided by the core vendor using a new, very effective compression scheme based on multilevel Huffman coding. Each Huffman codeword corresponds to three different kinds of information, and thus, significant compression improvements compared to the already known techniques are achieved. A simple architecture is proposed for decoding the compressed data on chip. Its hardware overhead is very low and comparable to that of the most efficient methods in the literature. Moreover, the major part of the decompressor can be shared among different cores, which reduces the hardware overhead of the proposed architecture considerably. Additionally, the proposed technique offers increased probability of detection of unmodeled faults since the majority of the unknown values of the test sets are replaced by pseudorandom data generated by a linear feedback shift register