A comparison of block-matching algorithms mapped to systolic-array implementation

  • Authors:
  • Sheu-Chih Cheng;Hsueh-Min Hang

  • Affiliations:
  • Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an evaluation of several well-known block-matching motion estimation algorithms from a system-level very large scale integration (VLSI) design viewpoint. Because a straightforward block-matching algorithm (BMA) demands a very large amount of computing power, many fast algorithms have been developed. However, these fast algorithms are often designed to merely reduce arithmetic operations without considering their overall performance in VLSI implementation. Three criteria are used to compare various block-matching algorithms: (1) silicon area, (2) input/output requirement, and (3) image quality. A basic systolic array architecture is chosen to implement all the selected algorithms. The purpose of this study is to compare these representative BMAs using the aforementioned criteria. The advantages/disadvantages of these algorithms in terms of their hardware tradeoff are discussed. The methodology and results presented provide useful guidelines to system designers in selecting a BMA for VLSI implementation