Efficient parametric yield estimation of analog/mixed-signal circuits via Bayesian model fusion

  • Authors:
  • Xin Li;Wangyang Zhang;Fa Wang;Shupeng Sun;Chenjie Gu

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Intel Strategic CAD Labs, Hillsboro, OR

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Parametric yield estimation is one of the most critical-yet-challenging tasks for designing and verifying nanoscale analog and mixed-signal circuits. In this paper, we propose a novel Bayesian model fusion (BMF) technique for efficient parametric yield estimation. Our key idea is to borrow the simulation data from an early stage (e.g., schematic-level simulation) to efficiently estimate the performance distributions at a late stage (e.g., post-layout simulation). BMF statistically models the correlation between early-stage and late-stage performance distributions by Bayesian inference. In addition, a convex optimization is formulated to solve the unknown late-stage performance distributions both accurately and robustly. Several circuit examples designed in a commercial 32 nm CMOS process demonstrate that the proposed BMF technique achieves up to 3.75X runtime speedup over the traditional kernel estimation method.